Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# Hexa- $\mu$-chloro- $\mu_{4}$-oxo-tetrakis[(4,5-dihydro-2-methyl-1,2-thiazole- $\kappa \mathrm{N}$ )copper(II)] 

C. A. Bolos ${ }^{\text {a }}$ and P. C. Christidis ${ }^{\text {b* }}$

${ }^{\text {a }}$ Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR54006 Thessaloniki, Greece, and ${ }^{\mathbf{b}}$ Laboratory of Applied Physics, Department of Physics, Aristotle University of Thessaloniki, GR54006 Thessaloniki, Greece
Correspondence e-mail: christid@physics.auth.gr
Received 29 August 2001
Accepted 10 October 2001
Online 14 December 2001
The title compound, $\left[\mathrm{Cu}_{4} \mathrm{Cl}_{6} \mathrm{O}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NS}\right)_{4}\right]$, was obtained by the reaction of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with 2-methyl-2-thiazoline in methanol. The complex has twofold crystallographic symmetry and contains a tetrahedron of four $\mathrm{Cu}^{\mathrm{II}}$ atoms coordinating a central $\mu_{4}-\mathrm{O}$ atom, with the six edges of the tetrahedron bridged by Cl atoms. Distance ranges are $\mathrm{Cu}-\mathrm{O}$ 1.917 (4)-1.920 (4) and $\mathrm{Cu}-\mathrm{Cl} 2.370$ (2)-2.445 (2) $\AA$.

## Comment

The magnetic properties of polynuclear paramagnetic transition metal ions and their presence at the active sites of a number of metalloproteins have attracted the attention of inorganic and bioinorganic chemists for many years (Marsh et al., 1983; Halfen \& Tolman, 1994). Among the ligands that allow the formation of tetranuclear copper(II) complexes are the thiazole derivatives, whose reaction products with $\mathrm{CuCl}_{2}$ have been extensively studied (Hodgson, 1984; Marsh et al., 1983, 1988). In contrast, relatively little information is available on the reaction of $\mathrm{Cu}^{\text {II }}$ with thiazoline derivatives, which have an almost similar structure to that of thiazoles. The present study is part of a systematic investigation on the reaction products of $\mathrm{CuCl}_{2}$ and $\mathrm{CuBr}_{2}$ with thiazolines.

(I)

The molecular structure of the title compound, (I), along with the atomic numbering scheme, is shown in Fig. 1, while
selected bond lengths and angles are given in Table 1. Selected intramolecular contact distances are given in Table 2. The central $\mathrm{Cu}_{4} \mathrm{OCl}_{6}$ unit is of the same type as that found in many related complexes (Bertrand, 1967; Belford et al., 1972; Gill \& Sterns, 1970; Guy et al., 1988). The four $\mathrm{Cu}^{\text {II }}$ atoms are arranged tetrahedrally around a central O atom, and are also bridged in pairs by Cl atoms. Each $\mathrm{Cu}^{\mathrm{II}}$ atom is fivefold coordinated by three Cl atoms, the central O atom and the N atom from a 2-methyl-2-thiazoline ligand ( $2 \mathrm{~m}-2 \mathrm{tzn}$ hereafter), in an arrangement close to trigonal bipyramidal (TBP). The percentage trigonal distortions from the square pyramidal (SP) geometry of the atomic arrangements around the two independent $\mathrm{Cu}^{\mathrm{II}}$ atoms are $\tau=77.5$ and $77.7 \%$ for Cu 1 and Cu 2 , respectively $[\tau=0 \%$ for ideal SP and $\tau=100 \%$ for ideal TBP geometries (Addison et al., 1984)].

The $\mathrm{Cu}_{4} \mathrm{OCl}_{6}$ cluster has been reported to possess various point-group symmetries, for example, $\overline{4} 3 m$ (Bertrand, 1967), 2 (Belford et al., 1972) or 1 (Gill \& Sterns, 1970). In the present case, the point-group symmetry is 2 , with the twofold axis passing through atoms $\mathrm{Cl} 2, \mathrm{O}$ and Cl 3 (Fig. 1). The observed bond lengths and angles in the cluster are in fair agreement with those observed in related complexes.

The two symmetrically independent $2 \mathrm{~m}-2$ tzn rings, which are approximately perpendicular to each other [91.7 (3) ${ }^{\circ}$, have almost identical geometries, with most of the corresponding bond lengths and angles coinciding within experimental error. The only significant differences appear between the bond lengths $\mathrm{C} 3-\mathrm{S} 1$ and $\mathrm{C} 7-\mathrm{S} 2[1.81$ (1) and 1.73 (2) $\AA$, respectively], and between the bond angles $\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$ and C6-C7-S2 [104.1 (6) and 107.8 (8) ${ }^{\circ}$, respectively]. The two $2 \mathrm{~m}-2 \mathrm{tzn}$ rings differ also in the degree of planarity. Thus, while the ring attached to Cu 1 appears slightly puckered, with a maximum atomic deviation from the mean plane of 0.18 (1) $\AA$, (atom C 2 ), the ring attached to Cu 2 is perfectly planar within experimental error. The $\mathrm{C} 1-\mathrm{N} 1$ and $\mathrm{C} 5-\mathrm{N} 2$ bonds, of length 1.26 (1) and 1.28 (1) $\AA$, respectively, are substantially shorter than the adjacent $\mathrm{C} 2-\mathrm{N} 1$ and $\mathrm{C} 6-\mathrm{N} 2$ bonds, of length


Figure 1
DIAMOND (Bergerhoff, 1996) plot of the title molecule with the atomic numbering scheme. Displacement ellipsoids are at the $30 \%$ probability level. [Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.]
1.46 (1) and 1.45 (1) $\AA$, respectively, indicating that the primary resonance structures in the two $2 \mathrm{~m}-2$ tzn rings have the double bond located between C 1 and N 1 , and between C 5 and N 2 , respectively. Atoms N 1 and N 2 are pyramidally coordinated by $\mathrm{C} 1, \mathrm{C} 2, \mathrm{Cu} 1$ and $\mathrm{C} 5, \mathrm{C} 6, \mathrm{Cu} 2$, respectively, the corresponding deviations from their basal planes being 0.108 (8) and 0.07 (1) $\AA$.

In the crystal structure of the title compound, no unusual intermolecular contact distances are observed, so that the molecular packing may be attributed to normal van der Waals interactions.

## Experimental

The title compound was synthesized by mixing a solution of copper(II) chloride dihydrate ( 1 mmol ) in methanol ( 10 ml ) with a solution of the ligand 2-methyl-2-thiazoline ( 4 mmol ) in methanol $(5 \mathrm{ml})$, the reaction being carried out at 291 K . The light-brown solution was left overnight at 291 K , whereupon brown rhombic crystals formed.

## Crystal data

$\left[\mathrm{Cu}_{4} \mathrm{Cl}_{6} \mathrm{O}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NS}\right)_{4}\right]$
$M_{r}=887.52$
Orthorhombic, Pbcn
$a=10.3705$ (18) A
$b=14.903$ (2) A
$c=20.375(4) \AA$
$V=3148.9(9) \AA^{3}$
$Z=4$
$D_{x}=1.872 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.87 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Upgraded Philips PW1100
diffractometer
$\theta / 2 \theta$ scans
Absorption correction: $\psi$ scan
(EMPIR; Stoe \& Cie, 1988)
$T_{\text {min }}=0.448, T_{\text {max }}=0.652$
5588 measured reflections
2775 independent reflections
1273 reflections with $I>2 \sigma(I)$

| $D_{m}$ measured by flotation in a |
| :--- |
| mixture of $\mathrm{CCl}_{4}$ and $\mathrm{CH}_{3} \mathrm{I}$ |

Mo $K \alpha$ radiation
Cell parameters from 15
$\quad$ reflections
$\theta=8.2-11.5^{\circ}$
$\mu=3.46 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Plate, brown
$0.23 \times 0.13 \times 0.04 \mathrm{~mm}$

$R_{\text {int }}=0.101$
$\theta_{\text {max }}=25^{\circ}$
$h=-12 \rightarrow 12$
$k=-17 \rightarrow 17$
$l=0 \rightarrow 24$
3 standard reflections
frequency: 120 min
intensity decay: $10 \%$

## Refinement

Refinement on $F^{2}$
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0540 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.127$
$S=0.90$
$(\Delta / \sigma)_{\text {max }}=0.020$
2775 reflections
$\Delta \rho_{\text {max }}=0.71 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.60 \mathrm{e}^{-3}$

Table 2
Selected intramolecular contact distances $(\AA)$.

| $\mathrm{Cu} 1 \cdots \mathrm{Cu} 2$ | $3.083(1)$ | $\mathrm{Cu} 1 \cdots \mathrm{Cu}^{2}$ | $3.133(1)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{\mathrm{i}}$ | $3.195(1)$ | $\mathrm{Cu} 2 \cdots \mathrm{Cu}^{\mathrm{i}}$ | $3.164(1)$ |

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.

For one atom, C 7 , the ratio of maximum/minimum principal r.m.s. atomic displacements was found to be fairly large (5.54), indicating possible disorder. An attempt, however, to refine C 7 as a split atom proved unsuccessful; therefore, its anisotropic displacement parameters were retained, since the refinement converged smoothly, leading to chemically reasonable positions for all atoms. The H atoms were placed geometrically at their ideal positions and allowed to ride with isotropic displacement parameters equal to $1.2 U_{\text {eq }}$ of the parent atoms. An extinction correction was not deemed necessary. Some geometrical calculations were performed using Xtal3.2 (Hall et al., 1992).

Data collection: DIF4 (Stoe \& Cie, 1988); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1988); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1502). Services for accessing these data are described at the back of the journal.

## References

Addison, W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
Belford, R., Fenton, D. E. \& Truter, M. R. (1972). J. Chem. Soc. Dalton Trans. pp. 2345-2350.
Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Str., Bonn, Germany. Bertrand, J. A. (1967). Inorg. Chem. 6, 495-498.
Gill, N. S. \& Sterns, M. (1970). Inorg. Chem. 9, 1619-1625.
Guy, J. T. Jr, Cooper, J. C., Gilardi, R. D. \& Flippen-Anderson, J. L. (1988). Inorg. Chem. 27, 635-638.
Halfen J. A. \& Tolman W. B. (1994). J. Am. Chem. Soc. 116, 5475-5476.
Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. Xtal3. 2 Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Hodgson, D. J. (1984). J. Mol. Catal. 23, 219-233.
Marsh, W. E., Hatfield, W. E. \& Hodgson, D. J. (1983). Inorg. Chem. 22, 28992903.

Marsh, W. E., Hatfield, W. E. \& Hodgson, D. J. (1988). Inorg. Chem. 27, 18191822.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1988). DIF4, REDU4 and EMPIR. Versions 6.2. Stoe \& Cie, Darmstadt, Germany.
Symmetry code: (i) $-x, y, \frac{1}{2}-z$.

